Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil.

نویسندگان

  • Christopher Rösch
  • Alexander Mergel
  • Hermann Bothe
چکیده

Isolated soil DNA from an oak-hornbeam forest close to Cologne, Germany, was suitable for PCR amplification of gene segments coding for the 16S rRNA and nitrogenase reductase (NifH), nitrous oxide reductase (NosZ), cytochrome cd(1)-containing nitrite reductase (NirS), and Cu-containing nitrite reductase (NirK) of denitrification. For each gene segment, diverse PCR products were characterized by cloning and sequencing. None of the 16S rRNA gene sequences was identical to any deposited in the data banks, and therefore each of them belonged to a noncharacterized bacterium. In contrast, the analyzed clones of nifH gave only a few different sequences, which occurred many times, indicating a low level of species richness in the N2-fixing bacterial population in this soil. Identical nifH sequences were also detected in PCR amplification products of DNA of a soil approximately 600 km distant from the Cologne area. Whereas biodiversity was high in the case of nosZ, only a few different sequences were obtained with nirK. With respect to nirS, cloning and sequencing of the PCR products revealed that many false gene segments had been amplified with DNA from soil but not from cultured bacteria. With the 16S rRNA gene data, many sequences of uncultured bacteria belonging to the Acidobacterium phylum and actinomycetes showed up in the PCR products when isolated DNA was used as the template, whereas sequences obtained for nifH and for the denitrification genes were closely related to those of the proteobacteria. Although in such an experimental approach one has to cope with the enormous biodiversity in soils and only a few PCR products can be selected at random, the data suggest that denitrification and N2 fixation are not genetic traits of most of the uncultured bacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, a...

متن کامل

DNA-probing for genes coding for denitrification, N2-fixation and nitrification in bacteria isolated from different soils.

Bacteria isolated from different layers of four soils of the Cologne area were analyzed for denitrifying, nitrifying and N2-fixing isolates by colony hybridization using gene probes. In the soils tested, the percentage of denitrifying bacteria among the total population isolated was 3-8% (in one case exceptionally 15%) and thus small. Denitrifying bacteria were particularly enriched in the uppe...

متن کامل

Response of soil microbiota to the addition of 3 , 3 ′ - diaminobenzidine

3,3′-Diaminobenzidine was applied at doses of 5, 10, 25, and 50 mg kg−1 of soil and their effects were evaluated on indigenous soil microbial communities (viable aerobic bacteria, fungal populations, aerobic N2-fixing bacteria, denitrifying, and nitrifying bacteria), and soil enzymatic activities (acid and alkaline phosphatases, arylsulfatase, and dehydrogenase). At doses of 5 or 10 mg kg−1, 3,...

متن کامل

Effect of Different Forest Types on Soil Properties and Biodiversity of Grassland Cover and Regeneration in Central Hyrcanian

        In this study we evaluate the effects of different types on soil Physical and chemical Properties and plant species biodiversity in the hyrcanian forests of Iran. For this porpuse 33 sample plots were established in 5 vegetation types consist of pure beech (Fagus orientalis), Ash plantation (fraxinus excelsior), spruce plantation (Picea abies), mixed forest and degraded forest. In each ...

متن کامل

nifH gene diversity in the bacterial community associated with the rhizosphere of Molinia coerulea, an oligonitrophilic perennial grass.

Rhizosphere associative dinitrogen fixation could be a valuable source of nitrogen in many nitrogen limited natural ecosystems, such as the rhizosphere of Molinia coerulea, a hemicryptophytic perennial grass naturally occurring in contrasted oligonitrophilic soils. The diversity of the dinitrogen-fixing bacteria associated with this environment was assessed by a cloning-sequencing approach on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 68 8  شماره 

صفحات  -

تاریخ انتشار 2002